Pages

Welcome to our blog, where you can keep up-to-date with the latest P2i news and developments. We will post articles regarding news, events we attend, speaker presentations as well as explaining the nanotechnology industry.

Search the P2i Blog

Wednesday, 19 June 2013

With the introduction of the Galaxy S4 Active and Experia ZR we ask: “How waterproof are consumer electronics?”

Smartphones are under a lot of pressure to live up to the expectations of consumers’ daily lives - meeting the environmental challenges as we seamlessly integrate between work, social and home life. 

On top of this the miniaturisation of systems based on integrated circuits and close component spacing, means devices are more susceptible to water damage such as electrochemical migration.

With all the noise around the Galaxy S4 Active and Experia ZR we reflect on a post from October 2012 where we answered the question, “How waterproof are consumer electronics?"   

- October 2012 - 

If you are a keen follower of consumer technology, then you will be aware that there has been a steady emergence over the past year of smartphones and tablets offered complete with 'waterproof' protection. But just how waterproof are these electronics?

Gadgets form an essential part of our everyday lives and there are few places left where our smartphones and tablets do not accompany us. More and more people are taking their electronics into potentially hazardous locations, for example the bathroom or even worse, saunas!

What you may not realize is that even if the device is left in a 'safe' spot, these environments still pose a risk. Water takes many forms such as vapour, mist and steam, all of which can penetrate inside devices. If there is no barrier against ingress, then the vapour or steam can reach internal components, resulting in corrosion and phone malfunctions.

This principle is more commonly understood when dealing with water in its normal form, liquid. Should a device fall into, or be splashed with liquid, without a protective barrier in place, the liquid can penetrate deep inside the device, resulting in electrochemical migration:
  • Electrochemical migration is the movement of metal ions between conductors which results in devices short circuiting and failing.
Our everyday lives have resulted in a greater need for electronics that can withstand the effects of liquids in all their forms. This in turn has seen the latest smartphones and tablets being offered with a repellent or waterproof protection.

What makes electronics waterproof?

For an electronic device to be considered waterproof, it has to be either completely sealed and ruggedized (making them bulky), or alternatively it must have barriers in place that stop water from penetrating through. It is this second option that is proving more popular now, as it allows devices to offer protection from water without the need for external casings. In this approach, manufacturers use seals known as gaskets or O-rings to act as barriers, stopping liquids from penetrating inside the device and damaging the internal components.

So are they really waterproof?

This is an interesting question as devices can claim to be waterproof if they have barriers in place to keep water out, but what about the internal components themselves? Are they also protected should liquid manage to get inside?

The answer in the majority of cases is unfortunately NO. Sealing devices off does stop water from getting in but if the barrier is compromised, for example by a device being dropped, then the case, gaskets or O-rings protecting it can become damaged and break. This could allow water to seep  towards the circuit board and internal components, resulting in device failure and loss of data.

It just takes one break in the seal for water to get inside and if this does occur, it may not be noticed as seals are hidden away on the inside. So while we think our device is waterproof, a break in the seal will not become apparent until the phone is malfunctioning and by then it could be too late.

The importance of protecting the internal components

Knowing that waterproof devices are only as good as the seals and barriers that protect them, it is important that protection is also offered to the internal components as well. And this is where liquid repellent nano-coating technology comes in.


A liquid repellent nano-coating differs from a waterproof solution in that it is not a physical barrier, meaning that liquid can still penetrate inside the device. This, however, is not the end of the device's life. The nano-coating, which is applied in vapour form, molecularly bonds to both the inside and outside of the entire device, ensuring that each and every exposed surface is treated. What this means is that, although water can get inside the device, any liquid that does come into contact with components will simply move away from the surface, rather than sticking to it, resulting in reduced corrosion, electrochemical migration and failure.

While a nano-coating is not waterproof (it is not a physical barrier), it does protect from splashes and spills as well as less obvious 'wet' environments such as saunas, bathrooms and high humidity climates.

A waterproof device has many benefits for day to day life but if the barrier fails, the device becomes vulnerable. By applying a liquid repellent nano-coating to the internal components, protection is offered to the most valuable parts of electronic devices, where all our data, numbers and images are stored. Nano-coatings are not a waterproof solution but do offer protection against everyday scenarios and environments, we and our devices find ourselves exposed to.